68.1.28 problem 35

Internal problem ID [17095]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Exercises 1.1, page 10
Problem number : 35
Date solved : Thursday, October 02, 2025 at 01:43:10 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=x \sin \left (x^{2}\right ) \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 12
ode:=diff(y(x),x) = x*sin(x^2); 
dsolve(ode,y(x), singsol=all);
 
\[ y = -\frac {\cos \left (x^{2}\right )}{2}+c_1 \]
Mathematica. Time used: 0.007 (sec). Leaf size: 23
ode=D[y[x],x]==x*Sin[x^2]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \int _1^xK[1] \sin \left (K[1]^2\right )dK[1]+c_1 \end{align*}
Sympy. Time used: 0.099 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x*sin(x**2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} - \frac {\cos {\left (x^{2} \right )}}{2} \]