Internal
problem
ID
[17126]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
1.
Introduction
to
Differential
Equations.
Exercises
1.1,
page
10
Problem
number
:
81
Date
solved
:
Thursday, October 02, 2025 at 01:44:07 PM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(y(x),x),x),x),x)+25/2*diff(diff(y(x),x),x)-5*diff(y(x),x)+629/16*y(x) = 0; ic:=[y(0) = 0, D(y)(0) = 1, (D@@2)(y)(0) = -1, (D@@3)(y)(0) = 1]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=D[y[x],{x,4}]+25/2*D[y[x],{x,2}]-5*D[y[x],x]+629/16*y[x]==0; ic={y[0]==0,Derivative[1][y][0] ==1,Derivative[2][y][0] ==-1,Derivative[3][y][0]==1}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(629*y(x)/16 - 5*Derivative(y(x), x) + 25*Derivative(y(x), (x, 2))/2 + Derivative(y(x), (x, 4)),0) ics = {y(0): 0, Subs(Derivative(y(x), x), x, 0): 1, Subs(Derivative(y(x), (x, 2)), x, 0): -1, Subs(Derivative(y(x), (x, 3)), x, 0): 1} dsolve(ode,func=y(x),ics=ics)