68.2.9 problem 14

Internal problem ID [17137]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 1. Introduction to Differential Equations. Review exercises, page 23
Problem number : 14
Date solved : Thursday, October 02, 2025 at 01:44:15 PM
CAS classification : [[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]

\begin{align*} 2 x -3 y+\left (2 y-3 x \right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.012 (sec). Leaf size: 53
ode:=2*x-3*y(x)+(2*y(x)-3*x)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {3 c_1 x -\sqrt {5 x^{2} c_1^{2}+4}}{2 c_1} \\ y &= \frac {3 c_1 x +\sqrt {5 x^{2} c_1^{2}+4}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.243 (sec). Leaf size: 110
ode=(2*x-3*y[x])+(2*y[x]-3*x)*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (3 x-\sqrt {5 x^2+4 e^{c_1}}\right )\\ y(x)&\to \frac {1}{2} \left (3 x+\sqrt {5 x^2+4 e^{c_1}}\right )\\ y(x)&\to \frac {1}{2} \left (3 x-\sqrt {5} \sqrt {x^2}\right )\\ y(x)&\to \frac {1}{2} \left (\sqrt {5} \sqrt {x^2}+3 x\right ) \end{align*}
Sympy. Time used: 0.827 (sec). Leaf size: 37
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x + (-3*x + 2*y(x))*Derivative(y(x), x) - 3*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \frac {3 x}{2} - \frac {\sqrt {C_{1} + 5 x^{2}}}{2}, \ y{\left (x \right )} = \frac {3 x}{2} + \frac {\sqrt {C_{1} + 5 x^{2}}}{2}\right ] \]