Internal
problem
ID
[17169]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.1,
page
32
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 01:49:02 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=2*diff(y(t),t)+t*y(t) = ln(t); ic:=[y(exp(1)) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=2*D[y[t],t]+t*y[t]==Log[t]; ic={y[Exp[1]]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t*y(t) - log(t) + 2*Derivative(y(t), t),0) ics = {y(E): 0} dsolve(ode,func=y(t),ics=ics)