68.3.31 problem 26

Internal problem ID [17178]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.1, page 32
Problem number : 26
Date solved : Thursday, October 02, 2025 at 01:49:20 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=t y^{2} \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&={\frac {1}{2}} \\ \end{align*}
Maple. Time used: 0.105 (sec). Leaf size: 13
ode:=diff(y(t),t) = t*y(t)^2; 
ic:=[y(0) = 1/2]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = -\frac {2}{t^{2}-4} \]
Mathematica. Time used: 0.083 (sec). Leaf size: 14
ode=D[y[t],t]==t*y[t]^2; 
ic={y[0]==1/2}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to -\frac {2}{t^2-4} \end{align*}
Sympy. Time used: 0.092 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-t*y(t)**2 + Derivative(y(t), t),0) 
ics = {y(0): 1/2} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = - \frac {2}{t^{2} - 4} \]