68.4.1 problem 1

Internal problem ID [17181]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 1
Date solved : Thursday, October 02, 2025 at 01:49:36 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\frac {x}{y^{2}} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 65
ode:=diff(y(x),x) = x/y(x)^2; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {\left (12 x^{2}+8 c_1 \right )^{{1}/{3}}}{2} \\ y &= -\frac {\left (12 x^{2}+8 c_1 \right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{4} \\ y &= \frac {\left (12 x^{2}+8 c_1 \right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{4} \\ \end{align*}
Mathematica. Time used: 0.111 (sec). Leaf size: 79
ode=D[y[x],x]==x/y[x]^2; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt [3]{-\frac {3}{2}} \sqrt [3]{x^2+2 c_1}\\ y(x)&\to \sqrt [3]{\frac {3}{2}} \sqrt [3]{x^2+2 c_1}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{\frac {3}{2}} \sqrt [3]{x^2+2 c_1} \end{align*}
Sympy. Time used: 0.507 (sec). Leaf size: 63
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x/y(x)**2 + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \sqrt [3]{C_{1} + \frac {3 x^{2}}{2}}, \ y{\left (x \right )} = \frac {\left (-1 - \sqrt {3} i\right ) \sqrt [3]{C_{1} + \frac {3 x^{2}}{2}}}{2}, \ y{\left (x \right )} = \frac {\left (-1 + \sqrt {3} i\right ) \sqrt [3]{C_{1} + \frac {3 x^{2}}{2}}}{2}\right ] \]