Internal
problem
ID
[17194]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.2,
page
39
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 01:50:06 PM
CAS
classification
:
[_separable]
ode:=(5*x(t)^5-4*cos(x(t)))*diff(x(t),t)+2*cos(9*t)+2*sin(7*t) = 0; dsolve(ode,x(t), singsol=all);
ode=(5*x[t]^5-4*Cos[x[t]])*D[x[t],t]+(2*Cos[9*t]+2*Sin[7*t])==0; ic={}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq((5*x(t)**5 - 4*cos(x(t)))*Derivative(x(t), t) + 2*sin(7*t) + 2*cos(9*t),0) ics = {} dsolve(ode,func=x(t),ics=ics)