68.4.38 problem 38

Internal problem ID [17218]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 38
Date solved : Thursday, October 02, 2025 at 01:58:34 PM
CAS classification : [_quadrature]

\begin{align*} y^{\prime }&=y^{3}-y^{2} \end{align*}
Maple. Time used: 0.042 (sec). Leaf size: 16
ode:=diff(y(t),t) = y(t)^3-y(t)^2; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {1}{\operatorname {LambertW}\left (-c_1 \,{\mathrm e}^{t -1}\right )+1} \]
Mathematica. Time used: 0.109 (sec). Leaf size: 40
ode=D[y[t],t]==y[t]^3-y[t]^2; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \text {InverseFunction}\left [\int _1^{\text {$\#$1}}\frac {1}{(K[1]-1) K[1]^2}dK[1]\&\right ][t+c_1]\\ y(t)&\to 0\\ y(t)&\to 1 \end{align*}
Sympy. Time used: 0.188 (sec). Leaf size: 19
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)**3 + y(t)**2 + Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ t - \log {\left (y{\left (t \right )} - 1 \right )} + \log {\left (y{\left (t \right )} \right )} - \frac {1}{y{\left (t \right )}} = C_{1} \]