68.4.57 problem 57 (a)

Internal problem ID [17237]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.2, page 39
Problem number : 57 (a)
Date solved : Thursday, October 02, 2025 at 01:59:28 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=\cos \left (t \right ) y \end{align*}

With initial conditions

\begin{align*} y \left (0\right )&=1 \\ \end{align*}
Maple. Time used: 0.021 (sec). Leaf size: 7
ode:=diff(y(t),t) = y(t)*cos(t); 
ic:=[y(0) = 1]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = {\mathrm e}^{\sin \left (t \right )} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 17
ode=D[y[t],t]==y[t]*Cos[t]; 
ic={y[0]==1}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \exp \left (\int _0^t\cos (K[1])dK[1]\right ) \end{align*}
Sympy. Time used: 0.138 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-y(t)*cos(t) + Derivative(y(t), t),0) 
ics = {y(0): 1} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = e^{\sin {\left (t \right )}} \]