Internal
problem
ID
[17243]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.2,
page
39
Problem
number
:
60
(b)
Date
solved
:
Thursday, October 02, 2025 at 01:59:44 PM
CAS
classification
:
[[_homogeneous, `class C`], _rational, [_Abel, `2nd type`, `class A`]]
ode:=diff(y(x),x) = (x-y(x)+2)/(2*x-2*y(x)-1); dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]==(x-y[x]+2)/(2*x-2*y[x]-1); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((-x + y(x) - 2)/(2*x - 2*y(x) - 1) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)