68.5.18 problem 18

Internal problem ID [17269]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.3, page 49
Problem number : 18
Date solved : Thursday, October 02, 2025 at 02:00:30 PM
CAS classification : [_linear]

\begin{align*} y^{\prime }+y x&=x^{3} \end{align*}
Maple. Time used: 0.001 (sec). Leaf size: 17
ode:=diff(y(x),x)+x*y(x) = x^3; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2}-2+{\mathrm e}^{-\frac {x^{2}}{2}} c_1 \]
Mathematica. Time used: 0.047 (sec). Leaf size: 22
ode=D[y[x],x]+y[x]*x==x^3; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^2+c_1 e^{-\frac {x^2}{2}}-2 \end{align*}
Sympy. Time used: 0.153 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-x**3 + x*y(x) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{1} e^{- \frac {x^{2}}{2}} + x^{2} - 2 \]