Internal
problem
ID
[17279]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.3,
page
49
Problem
number
:
28
Date
solved
:
Thursday, October 02, 2025 at 02:00:43 PM
CAS
classification
:
[_linear]
With initial conditions
ode:=diff(y(t),t)+3*t^2*y(t) = exp(-t^3); ic:=[y(0) = 2]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],t]+3*t^2*y[t]==Exp[-t^3]; ic={y[0]==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(3*t**2*y(t) + Derivative(y(t), t) - exp(-t**3),0) ics = {y(0): 2} dsolve(ode,func=y(t),ics=ics)