Internal
problem
ID
[17285]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.3,
page
49
Problem
number
:
34
Date
solved
:
Thursday, October 02, 2025 at 02:00:54 PM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(x(t),t) = x(t)+t+1; ic:=[x(0) = 2]; dsolve([ode,op(ic)],x(t), singsol=all);
ode=D[x[t],t]==x[t]+t+1; ic={x[0]==2}; DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") ode = Eq(-t - x(t) + Derivative(x(t), t) - 1,0) ics = {x(0): 2} dsolve(ode,func=x(t),ics=ics)