Internal
problem
ID
[17311]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
1
Date
solved
:
Thursday, October 02, 2025 at 02:01:26 PM
CAS
classification
:
[_exact, _rational, [_Abel, `2nd type`, `class B`]]
ode:=y(t)^2-1/2*y(t)/t^(1/2)+(2*t*y(t)-t^(1/2)+1)*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(y[t]^2-y[t]/(2*Sqrt[t]))+(2*t*y[t]-Sqrt[t]+1)*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((-sqrt(t) + 2*t*y(t) + 1)*Derivative(y(t), t) + y(t)**2 - y(t)/(2*sqrt(t)),0) ics = {} dsolve(ode,func=y(t),ics=ics)
Timed Out