68.6.10 problem 11

Internal problem ID [17320]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Exercises 2.4, page 57
Problem number : 11
Date solved : Thursday, October 02, 2025 at 02:02:30 PM
CAS classification : [_quadrature]

\begin{align*} 3 t^{2}-y^{\prime }&=0 \end{align*}
Maple. Time used: 0.000 (sec). Leaf size: 9
ode:=3*t^2-diff(y(t),t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = t^{3}+c_1 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 11
ode=3*t^2-D[y[t],t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to t^3+c_1 \end{align*}
Sympy. Time used: 0.064 (sec). Leaf size: 7
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(3*t**2 - Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = C_{1} + t^{3} \]