Internal
problem
ID
[17335]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
26
Date
solved
:
Thursday, October 02, 2025 at 02:04:43 PM
CAS
classification
:
[_exact]
ode:=2*t*sin(y(t))-2*t*y(t)*sin(t^2)+(t^2*cos(y(t))+cos(t^2))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(2*t*Sin[y[t]]-2*t*y[t]*Sin[t^2])+(t^2*Cos[y[t]]+Cos[t^2] )*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-2*t*y(t)*sin(t**2) + 2*t*sin(y(t)) + (t**2*cos(y(t)) + cos(t**2))*Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
Timed Out