Internal
problem
ID
[17345]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
36
Date
solved
:
Thursday, October 02, 2025 at 02:06:13 PM
CAS
classification
:
[_exact]
With initial conditions
ode:=2*t*y(t)*exp(t^2)+2*t*exp(-y(t))+(exp(t^2)-t^2*exp(-y(t))+1)*diff(y(t),t) = 0; ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=(2*t*y[t]*Exp[t^2]+2*t*Exp[-y[t]])+(Exp[t^2]-t^2*Exp[-y[t]]+1)*D[y[t],t]==0; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t*y(t)*exp(t**2) + 2*t*exp(-y(t)) + (-t**2*exp(-y(t)) + exp(t**2) + 1)*Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)
Timed Out