Internal
problem
ID
[17356]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
52
Date
solved
:
Thursday, October 02, 2025 at 02:10:19 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x),G(x)]`], [_Abel, `2nd type`, `class B`]]
ode:=y(t)+2*t^2+(t^2*y(t)-t)*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(y[t]+2*t^2)+(t^2*y[t]-t)*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t**2 + (t**2*y(t) - t)*Derivative(y(t), t) + y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)