Internal
problem
ID
[17359]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
55
Date
solved
:
Thursday, October 02, 2025 at 02:10:30 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x),G(x)]`]]
ode:=2*t+tan(y(t))+(t-t^2*tan(y(t)))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(2*t+Tan[y[t]])+(t-t^2*Tan[y[t]])*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t + (-t**2*tan(y(t)) + t)*Derivative(y(t), t) + tan(y(t)),0) ics = {} dsolve(ode,func=y(t),ics=ics)