Internal
problem
ID
[17363]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Exercises
2.4,
page
57
Problem
number
:
59
(ii)
Date
solved
:
Thursday, October 02, 2025 at 02:11:55 PM
CAS
classification
:
[[_homogeneous, `class A`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
ode:=9/5*t+2*y(t)+(2*t+2*y(t))*diff(y(t),t) = 0; dsolve(ode,y(t), singsol=all);
ode=(18/10*t+2*y[t])+(2*t+2*y[t])*D[y[t],t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(9*t/5 + (2*t + 2*y(t))*Derivative(y(t), t) + 2*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)