68.8.15 problem 15
Internal
problem
ID
[17438]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
15
Date
solved
:
Thursday, October 02, 2025 at 02:21:55 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
\begin{align*} x^{\prime }&=\frac {5 t x}{t^{2}+x^{2}} \end{align*}
✓ Maple. Time used: 2.652 (sec). Leaf size: 522
ode:=diff(x(t),t) = 5*t*x(t)/(x(t)^2+t^2);
dsolve(ode,x(t), singsol=all);
\begin{align*} \text {Solution too large to show}\end{align*}
✓ Mathematica. Time used: 60.08 (sec). Leaf size: 641
ode=D[x[t],t]==5*t*x[t]/(x[t]^2+t^2);
ic={};
DSolve[{ode,ic},x[t],t,IncludeSingularSolutions->True]
\begin{align*} x(t)&\to -\sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,1\right ]}\\ x(t)&\to \sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,1\right ]}\\ x(t)&\to -\sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,2\right ]}\\ x(t)&\to \sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,2\right ]}\\ x(t)&\to -\sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,3\right ]}\\ x(t)&\to \sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,3\right ]}\\ x(t)&\to -\sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,4\right ]}\\ x(t)&\to \sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,4\right ]}\\ x(t)&\to -\sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,5\right ]}\\ x(t)&\to \sqrt {\text {Root}\left [\text {$\#$1}^5-20 \text {$\#$1}^4 t^2+160 \text {$\#$1}^3 t^4-640 \text {$\#$1}^2 t^6+\text {$\#$1} \left (1280 t^8+e^{8 c_1}\right )-1024 t^{10}\&,5\right ]} \end{align*}
✓ Sympy. Time used: 0.365 (sec). Leaf size: 22
from sympy import *
t = symbols("t")
x = Function("x")
ode = Eq(-5*t*x(t)/(t**2 + x(t)**2) + Derivative(x(t), t),0)
ics = {}
dsolve(ode,func=x(t),ics=ics)
\[
\log {\left (x{\left (t \right )} \right )} = C_{1} - \log {\left (\left (\frac {4 t^{2}}{x^{2}{\left (t \right )}} - 1\right )^{\frac {5}{8}} \right )}
\]