68.8.31 problem 31

Internal problem ID [17454]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 31
Date solved : Thursday, October 02, 2025 at 02:22:37 PM
CAS classification : [[_homogeneous, `class C`], _exact, _dAlembert]

\begin{align*} \cos \left (t -y\right )+\left (1-\cos \left (t -y\right )\right ) y^{\prime }&=0 \end{align*}

With initial conditions

\begin{align*} y \left (\pi \right )&=\pi \\ \end{align*}
Maple. Time used: 0.125 (sec). Leaf size: 19
ode:=cos(t-y(t))+(1-cos(t-y(t)))*diff(y(t),t) = 0; 
ic:=[y(Pi) = Pi]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = t -\operatorname {RootOf}\left (\textit {\_Z} -t +\pi -\sin \left (\textit {\_Z} \right )\right ) \]
Mathematica. Time used: 0.102 (sec). Leaf size: 59
ode=Cos[t-y[t]]+(1-Cos[t-y[t]])*D[y[t],t]==0; 
ic={y[Pi]==Pi}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\[ \text {Solve}\left [\int _{\pi }^t-\cos (K[1]-y(t))dK[1]+\int _{\pi }^{y(t)}\left (\cos (t-K[2])-\int _{\pi }^t-\sin (K[1]-K[2])dK[1]-1\right )dK[2]=0,y(t)\right ] \]
Sympy. Time used: 2.803 (sec). Leaf size: 12
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((1 - cos(t - y(t)))*Derivative(y(t), t) + cos(t - y(t)),0) 
ics = {y(pi): pi} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} + \sin {\left (t - y{\left (t \right )} \right )} - \pi = 0 \]