Internal
problem
ID
[17457]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
2.
First
Order
Equations.
Review
exercises,
page
80
Problem
number
:
34
Date
solved
:
Thursday, October 02, 2025 at 02:23:46 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
With initial conditions
ode:=y(t)^2+(2*t*y(t)-2*cos(y(t))*sin(y(t)))*diff(y(t),t) = 0; ic:=[y(0) = Pi]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=(y[t]^2)+(2*t*y[t]-2*Cos[y[t]]*Sin[y[t]])*D[y[t],t]==0; ic={y[0]==Pi}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq((2*t*y(t) - 2*sin(y(t))*cos(y(t)))*Derivative(y(t), t) + y(t)**2,0) ics = {y(0): pi} dsolve(ode,func=y(t),ics=ics)