68.8.40 problem 40 (c)

Internal problem ID [17463]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 2. First Order Equations. Review exercises, page 80
Problem number : 40 (c)
Date solved : Thursday, October 02, 2025 at 02:24:21 PM
CAS classification : [_separable]

\begin{align*} y^{\prime }&=-\frac {y}{t -2} \end{align*}

With initial conditions

\begin{align*} y \left (2\right )&=0 \\ \end{align*}
Maple. Time used: 0.067 (sec). Leaf size: 5
ode:=diff(y(t),t) = -y(t)/(t-2); 
ic:=[y(2) = 0]; 
dsolve([ode,op(ic)],y(t), singsol=all);
 
\[ y = 0 \]
Mathematica. Time used: 0.002 (sec). Leaf size: 6
ode=D[y[t],t]==-y[t]/(t-2); 
ic={y[2]==0}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to 0 \end{align*}
Sympy. Time used: 0.117 (sec). Leaf size: 3
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(Derivative(y(t), t) + y(t)/(t - 2),0) 
ics = {y(2): 0} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = 0 \]