Internal
problem
ID
[17469]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.1,
page
141
Problem
number
:
14
Date
solved
:
Thursday, October 02, 2025 at 02:24:27 PM
CAS
classification
:
[[_2nd_order, _missing_x]]
With initial conditions
ode:=diff(diff(y(t),t),t)+9*y(t) = 0; ic:=[y(0) = 1, D(y)(0) = -3]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+9*y[t]==0; ic={y[0]==1,Derivative[1][y][0] ==-3}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(9*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): -3} dsolve(ode,func=y(t),ics=ics)