68.9.14 problem 25

Internal problem ID [17477]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.1, page 141
Problem number : 25
Date solved : Thursday, October 02, 2025 at 02:24:35 PM
CAS classification : [[_2nd_order, _missing_x]]

\begin{align*} y^{\prime \prime }-5 y^{\prime }+6 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{3 t} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=diff(diff(y(t),t),t)-5*diff(y(t),t)+6*y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \left (c_1 \,{\mathrm e}^{t}+c_2 \right ) {\mathrm e}^{2 t} \]
Mathematica. Time used: 0.008 (sec). Leaf size: 20
ode=D[y[t],{t,2}]-5*D[y[t],t]+6*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to e^{2 t} \left (c_2 e^t+c_1\right ) \end{align*}
Sympy. Time used: 0.086 (sec). Leaf size: 14
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(6*y(t) - 5*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + C_{2} e^{t}\right ) e^{2 t} \]