Internal
problem
ID
[17483]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.1,
page
141
Problem
number
:
31
Date
solved
:
Thursday, October 02, 2025 at 02:24:37 PM
CAS
classification
:
[[_Emden, _Fowler]]
Using reduction of order method given that one solution is
ode:=t^2*diff(diff(y(t),t),t)+4*t*diff(y(t),t)-4*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+4*t*D[y[t],t]-4*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) + 4*t*Derivative(y(t), t) - 4*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)