68.9.23 problem 34

Internal problem ID [17486]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.1, page 141
Problem number : 34
Date solved : Thursday, October 02, 2025 at 02:24:38 PM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} t^{2} y^{\prime \prime }+3 t y^{\prime }+y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=\frac {1}{t} \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 14
ode:=t^2*diff(diff(y(t),t),t)+3*t*diff(y(t),t)+y(t) = 0; 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {c_2 \ln \left (t \right )+c_1}{t} \]
Mathematica. Time used: 0.011 (sec). Leaf size: 17
ode=t^2*D[y[t],{t,2}]+3*t*D[y[t],t]+y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {c_2 \log (t)+c_1}{t} \end{align*}
Sympy. Time used: 0.093 (sec). Leaf size: 10
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t**2*Derivative(y(t), (t, 2)) + 3*t*Derivative(y(t), t) + y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1} + C_{2} \log {\left (t \right )}}{t} \]