Internal
problem
ID
[17488]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.1,
page
141
Problem
number
:
36
Date
solved
:
Thursday, October 02, 2025 at 02:24:39 PM
CAS
classification
:
[[_Emden, _Fowler]]
ode:=t^2*diff(diff(y(t),t),t)+a*t*diff(y(t),t)+b*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]+a*t*D[y[t],t]+b*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") a = symbols("a") b = symbols("b") y = Function("y") ode = Eq(a*t*Derivative(y(t), t) + b*y(t) + t**2*Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)