Internal
problem
ID
[17563]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
38
Date
solved
:
Thursday, October 02, 2025 at 02:25:28 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
ode:=diff(diff(y(t),t),t)-diff(y(t),t)-20*y(t) = -2*exp(t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]-D[y[t],t]-20*y[t]==-2*Exp[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-20*y(t) + 2*exp(t) - Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {} dsolve(ode,func=y(t),ics=ics)