Internal
problem
ID
[17577]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
52
Date
solved
:
Thursday, October 02, 2025 at 02:25:38 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(t),t),t)+7*diff(y(t),t)+10*y(t) = t*exp(-t); ic:=[y(0) = -5/16, D(y)(0) = 9/16]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+7*D[y[t],t]+10*y[t]==t*Exp[-t]; ic={y[0]==-15/48,Derivative[1][y][0] ==9/16}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*exp(-t) + 10*y(t) + 7*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) ics = {y(0): -5/16, Subs(Derivative(y(t), t), t, 0): 9/16} dsolve(ode,func=y(t),ics=ics)