Internal
problem
ID
[17583]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
58
Date
solved
:
Thursday, October 02, 2025 at 02:25:44 PM
CAS
classification
:
[[_2nd_order, _missing_y]]
With initial conditions
ode:=diff(diff(y(t),t),t)-3*diff(y(t),t) = exp(-3*t)-exp(3*t); ic:=[y(0) = 1, D(y)(0) = 1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]-3*D[y[t],t]==Exp[-3*t]-Exp[3*t]; ic={y[0]==1,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(exp(3*t) - 3*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(-3*t),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE -2*sinh(3*t)/3 + Derivative(y(t), t) - Derivative(y(t), (t, 2))/3 cannot be solved by the factorable group method