Internal
problem
ID
[17586]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
61
Date
solved
:
Thursday, October 02, 2025 at 02:25:52 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(t),t),t)+4*y(t) = piecewise(0 <= t and t < Pi,0,Pi <= t and t < 2*Pi,10,2*Pi <= t,0); ic:=[y(0) = 0, D(y)(0) = 2]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+4*y[t]==Piecewise[{ {0,0<=t<Pi},{10,Pi<=t<2*Pi},{0,t>=2*Pi} }]; ic={y[0]==0,Derivative[1][y][0] ==2}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((0, (t >= 0) & (t < pi)), (10, (t >= pi) & (t < 2*pi)), (0, t >= 2*pi)) + 4*y(t) + Derivative(y(t), (t, 2)),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 2} dsolve(ode,func=y(t),ics=ics)