Internal
problem
ID
[607]
Book
:
Elementary
Differential
Equations.
By
C.
Henry
Edwards,
David
E.
Penney
and
David
Calvis.
6th
edition.
2008
Section
:
Chapter
5.
Linear
systems
of
differential
equations.
Section
5.3
(Matrices
and
linear
systems).
Problems
at
page
364
Problem
number
:
17
Date
solved
:
Tuesday, September 30, 2025 at 04:03:26 AM
CAS
classification
:
system_of_ODEs
ode:=[diff(x(t),t) = 3*x(t)-4*y(t)+z(t)+t, diff(y(t),t) = x(t)-3*z(t)+t^2, diff(z(t),t) = 6*y(t)-7*z(t)+t^3]; dsolve(ode);
ode={D[x[t],t]==3*x[t]-4*y[t]+z[t]+t,D[y[t],t]==x[t]-3*z[t]+t^2,D[z[t],t]==6*y[t]-7*z[t]+t^3}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
Too large to display
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(-t - 3*x(t) + 4*y(t) - z(t) + Derivative(x(t), t),0),Eq(-t**2 - x(t) + 3*z(t) + Derivative(y(t), t),0),Eq(-t**3 - 6*y(t) + 7*z(t) + Derivative(z(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)
Timed Out