Internal
problem
ID
[17589]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
62
(c)
Date
solved
:
Thursday, October 02, 2025 at 02:25:56 PM
CAS
classification
:
[[_linear, `class A`]]
With initial conditions
ode:=diff(y(t),t)-y(t) = exp(4*t); ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],t]-y[t]==Exp[4*t]; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-y(t) - exp(4*t) + Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)