Internal
problem
ID
[17594]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.3,
page
156
Problem
number
:
70
(a)
Date
solved
:
Thursday, October 02, 2025 at 02:26:01 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=4*diff(diff(y(t),t),t)+4*diff(y(t),t)+37*y(t) = cos(3*t); ic:=[y(0) = a, D(y)(Pi) = a]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=4*D[y[t],{t,2}]+4*D[y[t],t]+37*y[t]==Cos[3*t]; ic={y[0]==a,Derivative[1][y][Pi]==a}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(37*y(t) - cos(3*t) + 4*Derivative(y(t), t) + 4*Derivative(y(t), (t, 2)),0) ics = {y(0): a, Subs(Derivative(y(t), t), t, pi): a} dsolve(ode,func=y(t),ics=ics)