68.12.27 problem 27

Internal problem ID [17621]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.4, page 163
Problem number : 27
Date solved : Thursday, October 02, 2025 at 02:26:21 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }-2 y^{\prime }+y&={\mathrm e}^{t} \sqrt {-t^{2}+1} \end{align*}
Maple. Time used: 0.007 (sec). Leaf size: 36
ode:=diff(diff(y(t),t),t)-2*diff(y(t),t)+y(t) = exp(t)*(-t^2+1)^(1/2); 
dsolve(ode,y(t), singsol=all);
 
\[ y = \frac {{\mathrm e}^{t} \left (\left (t^{2}+2\right ) \sqrt {-t^{2}+1}+6 t c_1 +3 t \arcsin \left (t \right )+6 c_2 \right )}{6} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 55
ode=D[y[t],{t,2}]-2*D[y[t],t]+y[t]==Exp[t]*Sqrt[1-t^2]; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {1}{6} e^t \left (3 t \arcsin (t)+\sqrt {1-t^2} t^2+2 \sqrt {1-t^2}+6 c_2 t+6 c_1\right ) \end{align*}
Sympy. Time used: 0.208 (sec). Leaf size: 37
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-sqrt(1 - t**2)*exp(t) + y(t) - 2*Derivative(y(t), t) + Derivative(y(t), (t, 2)),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \left (C_{1} + t \left (C_{2} + \frac {t \sqrt {1 - t^{2}}}{6} + \frac {\operatorname {asin}{\left (t \right )}}{2}\right ) + \frac {\sqrt {1 - t^{2}}}{3}\right ) e^{t} \]