Internal
problem
ID
[17624]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
30
Date
solved
:
Thursday, October 02, 2025 at 02:26:23 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(y(t),t),t)+8*diff(y(t),t)+16*y(t) = exp(-4*t)/(t^2+1); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,2}]+8*D[y[t],t]+16*y[t]==Exp[-4*t]*1/(1+t^2); ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(16*y(t) + 8*Derivative(y(t), t) + Derivative(y(t), (t, 2)) - exp(-4*t)/(t**2 + 1),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (-16*t**2*y(t)*exp(4*t) - t**2*exp(4*t)*Derivative(y(t), (t, 2)) - 16*y(t)*exp(4*t) - exp(4*t)*Derivative(y(t), (t, 2)) + 1)*exp(-4*t)/(8*(t**2 + 1)) cannot be solved by the factorable group method