Internal
problem
ID
[17634]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
40
Date
solved
:
Thursday, October 02, 2025 at 02:26:32 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
With initial conditions
ode:=diff(diff(y(t),t),t)+9*y(t) = 1/2*csc(3*t); ic:=[y(1/4*Pi) = 2^(1/2), D(y)(1/4*Pi) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,2}]+9*y[t]==1/2*Csc[3*t]; ic={y[Pi/4]==Sqrt[2],Derivative[1][y][Pi/4]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(9*y(t) + Derivative(y(t), (t, 2)) - 1/(2*sin(3*t)),0) ics = {y(pi/4): sqrt(2), Subs(Derivative(y(t), t), t, pi/4): 0} dsolve(ode,func=y(t),ics=ics)