Internal
problem
ID
[17643]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
57
Date
solved
:
Thursday, October 02, 2025 at 02:26:43 PM
CAS
classification
:
[[_2nd_order, _exact, _linear, _nonhomogeneous]]
ode:=t^2*diff(diff(y(t),t),t)-4*t*diff(y(t),t)-6*y(t) = 2*ln(t); dsolve(ode,y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]-4*t*D[y[t],t]-6*y[t]==2*Log[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*Derivative(y(t), (t, 2)) - 4*t*Derivative(y(t), t) - 6*y(t) - 2*log(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)