Internal
problem
ID
[17647]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
61
(a)
Date
solved
:
Thursday, October 02, 2025 at 02:26:46 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
With initial conditions
ode:=t^2*diff(diff(y(t),t),t)-4*t*diff(y(t),t)+(t^2+6)*y(t) = t^3+2*t; ic:=[y(0) = 0, D(y)(0) = 1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=t^2*D[y[t],{t,2}]-4*t*D[y[t],t]+(t^2+6)*y[t]==t^3+2*t; ic={y[0]==0,Derivative[1][y][0] ==1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Timed out
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t**3 + t**2*Derivative(y(t), (t, 2)) - 4*t*Derivative(y(t), t) - 2*t + (t**2 + 6)*y(t),0) ics = {y(0): 0, Subs(Derivative(y(t), t), t, 0): 1} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE Derivative(y(t), t) - (t*(-t**2 + t*y(t) + t*Derivative(y(t), (t, 2)) - 2) + 6*y(t))/(4*t) cannot be solved by the factorable group method