Internal
problem
ID
[17650]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.4,
page
163
Problem
number
:
63
Date
solved
:
Thursday, October 02, 2025 at 02:26:48 PM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=4*t^2*diff(diff(y(t),t),t)+4*t*diff(y(t),t)+(16*t^2-1)*y(t) = 0; dsolve(ode,y(t), singsol=all);
ode=4*t^2*D[y[t],{t,2}]+4*t*D[y[t],t]+(16*t^2-1)*y[t]==0; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(4*t**2*Derivative(y(t), (t, 2)) + 4*t*Derivative(y(t), t) + (16*t**2 - 1)*y(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)