Internal
problem
ID
[17690]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.5,
page
175
Problem
number
:
63
(b)
Date
solved
:
Thursday, October 02, 2025 at 02:27:04 PM
CAS
classification
:
[[_high_order, _missing_x]]
With initial conditions
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-8*diff(diff(diff(y(t),t),t),t)+30*diff(diff(y(t),t),t)-56*diff(y(t),t)+49*y(t) = 0; ic:=[y(0) = 1, D(y)(0) = 2, (D@@2)(y)(0) = -1, (D@@3)(y)(0) = -1]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,4}]-8*D[ y[t],{t,3}]+30*D[y[t],{t,2}]-56*D[y[t],t]+49*y[t]==0; ic={y[0]==1,Derivative[1][y][0] ==2,Derivative[2][y][0] ==-1,Derivative[3][y][0]==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(49*y(t) - 56*Derivative(y(t), t) + 30*Derivative(y(t), (t, 2)) - 8*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)),0) ics = {y(0): 1, Subs(Derivative(y(t), t), t, 0): 2, Subs(Derivative(y(t), (t, 2)), t, 0): -1, Subs(Derivative(y(t), (t, 3)), t, 0): -1} dsolve(ode,func=y(t),ics=ics)