Internal
problem
ID
[17698]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.6,
page
187
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 02:27:08 PM
CAS
classification
:
[[_3rd_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(y(t),t),t),t)+10*diff(diff(y(t),t),t)+34*diff(y(t),t)+40*y(t) = t*exp(-4*t)+2*exp(-3*t)*cos(t); dsolve(ode,y(t), singsol=all);
ode=D[ y[t],{t,3}]+10*D[y[t],{t,2}]+34*D[y[t],t]+40*y[t]==t*Exp[-4*t]+2*Exp[-3*t]*Cos[t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-t*exp(-4*t) + 40*y(t) + 34*Derivative(y(t), t) + 10*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)) - 2*exp(-3*t)*cos(t),0) ics = {} dsolve(ode,func=y(t),ics=ics)