Internal
problem
ID
[17702]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.6,
page
187
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 02:27:10 PM
CAS
classification
:
[[_high_order, _with_linear_symmetries]]
ode:=diff(diff(diff(diff(y(t),t),t),t),t)-10*diff(diff(diff(y(t),t),t),t)+38*diff(diff(y(t),t),t)-64*diff(y(t),t)+40*y(t) = 153*exp(-t); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,4}]-10*D[ y[t],{t,3}]+38*D[y[t],{t,2}]-64*D[y[t],t]+40*y[t]==153*Exp[-t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(40*y(t) - 64*Derivative(y(t), t) + 38*Derivative(y(t), (t, 2)) - 10*Derivative(y(t), (t, 3)) + Derivative(y(t), (t, 4)) - 153*exp(-t),0) ics = {} dsolve(ode,func=y(t),ics=ics)