Internal
problem
ID
[17712]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.6,
page
187
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 02:27:17 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
ode:=diff(diff(diff(y(t),t),t),t)-4*diff(diff(y(t),t),t)-11*diff(y(t),t)+30*y(t) = exp(4*t); dsolve(ode,y(t), singsol=all);
ode=D[ y[t],{t,3}]-4*D[y[t],{t,2}]-11*D[y[t],t]+30*y[t]==Exp[4*t]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(30*y(t) - exp(4*t) - 11*Derivative(y(t), t) - 4*Derivative(y(t), (t, 2)) + Derivative(y(t), (t, 3)),0) ics = {} dsolve(ode,func=y(t),ics=ics)