Internal
problem
ID
[17723]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.6,
page
187
Problem
number
:
31
Date
solved
:
Thursday, October 02, 2025 at 02:27:22 PM
CAS
classification
:
[[_3rd_order, _missing_y]]
ode:=t^2*ln(t)*diff(diff(diff(y(t),t),t),t)-t*diff(diff(y(t),t),t)+diff(y(t),t) = 1; dsolve(ode,y(t), singsol=all);
ode=t^2*Log[t]*D[ y[t],{t,3}]-t*D[y[t],{t,2}]+D[y[t],t]==1; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(t**2*log(t)*Derivative(y(t), (t, 3)) - t*Derivative(y(t), (t, 2)) + Derivative(y(t), t) - 1,0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : CRootOf is not supported over ZZ[log(t)]