Internal
problem
ID
[17725]
Book
:
INTRODUCTORY
DIFFERENTIAL
EQUATIONS.
Martha
L.
Abell,
James
P.
Braselton.
Fourth
edition
2014.
ElScAe.
2014
Section
:
Chapter
4.
Higher
Order
Equations.
Exercises
4.6,
page
187
Problem
number
:
33
Date
solved
:
Thursday, October 02, 2025 at 02:27:23 PM
CAS
classification
:
[[_3rd_order, _with_linear_symmetries]]
With initial conditions
ode:=2*t^3*diff(diff(diff(y(t),t),t),t)+t^2*diff(diff(y(t),t),t)+t*diff(y(t),t)-y(t) = -3*t^2; ic:=[y(1) = 0, D(y)(1) = 1, (D@@2)(y)(1) = 0]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=2*t^3*D[ y[t],{t,3}]+t^2*D[y[t],{t,2}]+t*D[y[t],t]-y[t]==-3*t^2; ic={y[1]==0,Derivative[1][y][1]==1,Derivative[2][y][1]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(2*t**3*Derivative(y(t), (t, 3)) + t**2*Derivative(y(t), (t, 2)) + 3*t**2 + t*Derivative(y(t), t) - y(t),0) ics = {y(1): 0, Subs(Derivative(y(t), t), t, 1): 1, Subs(Derivative(y(t), (t, 2)), t, 1): 0} dsolve(ode,func=y(t),ics=ics)