68.15.1 problem 1

Internal problem ID [17727]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 1
Date solved : Thursday, October 02, 2025 at 02:27:24 PM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} 5 y-8 x y^{\prime }+4 x^{2} y^{\prime \prime }&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 15
ode:=4*x^2*diff(diff(y(x),x),x)-8*x*diff(y(x),x)+5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = \sqrt {x}\, \left (c_2 \,x^{2}+c_1 \right ) \]
Mathematica. Time used: 0.008 (sec). Leaf size: 20
ode=4*x^2*D[y[x],{x,2}]-8*x*D[y[x],x]+5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \sqrt {x} \left (c_2 x^2+c_1\right ) \end{align*}
Sympy. Time used: 0.092 (sec). Leaf size: 14
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(4*x**2*Derivative(y(x), (x, 2)) - 8*x*Derivative(y(x), x) + 5*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \sqrt {x} \left (C_{1} + C_{2} x^{2}\right ) \]