68.15.3 problem 3

Internal problem ID [17729]
Book : INTRODUCTORY DIFFERENTIAL EQUATIONS. Martha L. Abell, James P. Braselton. Fourth edition 2014. ElScAe. 2014
Section : Chapter 4. Higher Order Equations. Exercises 4.7, page 195
Problem number : 3
Date solved : Thursday, October 02, 2025 at 02:27:26 PM
CAS classification : [[_Emden, _Fowler]]

\begin{align*} 2 x^{2} y^{\prime \prime }-8 x y^{\prime }+8 y&=0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 13
ode:=2*x^2*diff(diff(y(x),x),x)-8*x*diff(y(x),x)+8*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x \left (c_1 \,x^{3}+c_2 \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 16
ode=2*x^2*D[y[x],{x,2}]-8*x*D[y[x],x]+8*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x \left (c_2 x^3+c_1\right ) \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**2*Derivative(y(x), (x, 2)) - 8*x*Derivative(y(x), x) + 8*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x \left (C_{1} + C_{2} x^{3}\right ) \]